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Abstract
We examine the relationship between investments in animal
breeding and productivity growth on Wisconsin dairy farms
using a control function approach. We incorporate farm-
level annual investment in breeding and genetics into the
law of motion of productivity as in De Loecker (2013) to
test the relationship between these investments and realized
productivity. Our unique dataset also allows us to look at
the effect of choosing bulls with high milk yield potential on
productivity. Our results indicate that breeding investments
made 3 years prior are associated with higher productivity
of the current cohort. However, the farms with the highest
level of productivity reap the lowest benefits from breeding
investments, suggesting that there are diminishing returns
to investing in genetics. When milk output is not quality
adjusted, the contribution of breeding to productivity is
undetectable, suggesting that breeding and investments in
milk quality are related. We conclude that investments in
breeding and genetics significantly contribute to dairy farm
productivity, especially in terms of milk quality.
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1 | INTRODUCTION

Milk yield has experienced significant growth in the past decades. Figure 1 charts the growth path of
average cow milk yield from 2003 to 2019, which grew on average 1.4% a year during this period. At
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the same time, the productivity of dairy bulls available on the market has grown at a higher rate:
milk yield, butterfat yield, and protein yield of dairy bulls grew on average 3.3%, 5.1%, and 4% per
year over the same period. When combined into a genetic production index,1 its growth path is simi-
lar to that of milk yield. The dairy science literature attributes as much as 50% of the growth in milk
yield in the past decades to genetic improvement in dairy cows (Pryce & Veerkamp, 2001;
Shook, 2006; Van Raden, 2004). Although its precise contribution is difficult to quantify, it is clear
that genetic improvement is an essential vector of productivity growth in dairy.

Choosing genetics is critical for productivity improvement of a dairy herd, and yet investments
in herd genetics has been largely ignored when estimating dairy farm production functions
(e.g., Jang & Du, 2019; Mukherjee et al., 2013; Njuki et al., 2020). By omitting this decision, conven-
tional production function estimation may misattribute this productivity growth to other input fac-
tors, which results in biased input coefficients (De Loecker, 2013). Moreover, not understanding this
vital vector of productivity growth in dairy farming makes it difficult to understand the effect of new
genetic improvements on the future of the dairy industry.

This paper investigates the effect of genetics investment on dairy farm productivity in Wisconsin.
Dairy farms choose bull genetics using artificial insemination (AI) each year in order to change the
future productivity of the herd. These investments are reflected in both how much farms spend on
breeding each year and the genetic indices of the bulls they choose in each year. In this paper, we
leverage both of these measures to better understand how investments in genetic improvement
impact the evolution of productivity on dairy farms.

Using two rich data sources on observed farm- and animal-level decisions, we integrate invest-
ment in genetic improvements into the dynamics of productivity, which is modeled by a first-order
Markov process in the style of Levinsohn and Petrin (2003) and De Loecker (2013). Since invest-
ments in genetics impact productivity 3 years from the date of investment, variation in breeding
investment helps identify the parameters in the farm production function. Using this method, we
analyze both the relationship of genetic investment to productivity growth as well as the extent to
which omitting investment in genetics biases estimated factor shares in the production function.

F I G U R E 1 Average milk yield and genetic productivity, 2003–2019

1This index is a weighted average of milk production, fat production, and protein production traits of dairy bulls for sale. The precise weights
are determined by principal component analysis, the details of which are found in the supplementary Appendix A.
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We find that both breeding expenditures and the production potential of the genetics farmers
choose are significant factors in the dynamic evolution of productivity. In our sample of Wisconsin
dairy farms, farmers with higher breeding expenditures 3 years prior had higher productivity, as did
farms that chose bulls with a higher genetic production index. We also find that dairy farms with
high productivity reap the smallest gains from increasing investment in high-yield genetics,
suggesting diminishing returns to investment in genetics. The magnitude of the relationship between
breeding investments and productivity depends on whether the output we use is adjusted for milk
quality, which suggests that breeding investments and milk quality improvements are related. In
addition to providing evidence on how genetics impact productivity, our analysis demonstrates the
importance of adjusting for output quality when analyzing dairy farm performance.

Our work expands on the productivity literature concerning dairy by modeling breeding as an
endogenous investment into future productivity. The effect of breeding on productivity growth has
thus far only been explored as an exogenous factor in technological progress and not as an invest-
ment decision. Townsend and Thirtle (2001) calculate that animal breeding research has a 35%
return on investment in South Africa using time series data on R&D expenditures. Studies examin-
ing the returns to breeding with farm-level data are even more rare. Like the majority of the dairy
economics literature, these studies use the distance function approach (Bravo-Ureta et al., 2021).
Using a modified Malmquist productivity index, Atsbeha et al. (2012) find that 19% of the produc-
tivity growth rate in the Icelandic dairy sector is due to changes in the average sire “breeding value,”
or estimated productivity. Importantly, Atsbeha et al. (2012) view genetics not as an input that
farmers invest in but rather feature of the technology, similar to technological progress. Roibas and
Alvarez (2010) use a similar, frontier-based method and find that the most technically efficient dairy
farms experience the highest returns to genetics.

The weakness of these approaches is that it does not control for the endogeneity of the genetics
of the herd. The genetic productivity of a herd is not an exogenous factor but rather a result of
investment decisions made by the farm in the past. The decision to adopt improved genetics is an
investment into future productivity based on current conditions including productivity of the exis-
ting cohort. Much like the framework of Olley and Pakes (1996), dairy farms make investments
every year in the genetics of their herd. Every year, farmers choose bulls to breed with their cows to
obtain replacement cows roughly 3 years in the future. These investments in bull quality provide the
proxy variable we can use to identify production function coefficients (e.g., Levinsohn &
Petrin, 2003; Olley & Pakes, 1996). Our work joins other studies that use the control function
approach to correct for the endogeneity of input decisions in dairy farming (Frick & Sauer, 2018;
Jang & Du, 2019; Kirwan et al., 2012; Läpple et al., 2021). Using the control function approach, our
work represents animal breeding more accurately as an endogenous investment made by the farmer
to improve future productivity and not simply as a exogenous feature of the technology. Our work
also takes advantage of cow-level data that provide more detailed and granular data for understand-
ing the economics of dairy operations, especially the selection of genetics (Hutchins et al., 2021;
Hutchins & Hueth, 2021).

Our work builds on previous control function analyses of dairy by modeling the relationship
between genetics investment and productivity by including genetic investments in the law of motion
of productivity. De Loecker (2013) demonstrates that, in the case of exporting firms, neglecting criti-
cal variables in the law of motion leads to poorly estimated factor shares. In the case of dairy, by
omitting intertemporal breeding investments we may be misattributing output to various factors
such as labor, feed, or even capital. Our study is also the first to examine the impact of genetic invest-
ments in health on productivity, a potentially important but so far unexplored aspect of productivity
growth (Townsend & Thirtle, 2001). Finally, our paper contributes to the production function litera-
ture by demonstrating an intuitive use for supervised machine learning in model estimation. We cor-
rect for survival bias using the method outlined in Olley and Pakes (1996) but significantly improve
the probability prediction step by using a random forest algorithm.

HUTCHINS ET AL. 3
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The paper proceeds as follows. First, we explain our empirical model that draws on De Loecker
(2013) to incorporate genetic investments into the production function. We then describe our three
data sources that provide farm- and cow-level information to estimate our model. We present the
results of our analysis in the fourth section before concluding with a discussion of the significance of
the results.

2 | EMPIRICAL MODEL

In our model, farm i produces Qit units of quality-adjusted milk in period t using these inputs: cows
(denoted by C hereafter), labor (L), capital (K), feed (F), and intermediate inputs (M). The output is
adjusted with the percentage composition of fat, the percentage composition of protein, and the
average somatic cell count (SCC).2 Labor corresponds to hired workers; capital refers to building,
machinery, and equipment; and intermediate inputs refer to electricity. Feed includes total amount
of purchased feed.3 The Cobb–Douglas production function is specified as4:

Qit ¼Cβc
it L

βl
it K

βk
it F

βf
it M

βm
it exp ωitþ εitð Þ, ð1Þ

where ω refers to the Hicks-neutral farm-level productivity measure, which implies that technical
change affects milk yield only by changing ω and not the balance of other inputs.5 The term ε is an
i.i.d. measurement error term that accounts for random productivity shocks. The logarithmic form
of Equation (1) is:

qit ¼ βccitþβl litþβkkitþβf f itþβmmitþωitþ εit , ð2Þ

where lowercase letters denote the log form of the uppercase letters, that is, qit � log Qitð Þ,
cit � log Citð Þ, lit � log Litð Þ, kit � log Kitð Þ, f it � log Fitð Þ, and mit � log Mitð Þ. To correctly estimate the
parameters of this equation, we must address three things: input endogeneity, the quality of output,
and survival bias.

2.1 | Input Endogeneity

Input endogeneity is a result of the correlation between farmers’ input decisions and unobserved
productivity ωit . Therefore, OLS estimates of the input coefficients are biased. There are some
approaches proposed in the early literature to deal with endogeneity such as the fixed effect model
(e.g., Hoch, 1955), utilizing the first order conditions of flexible inputs (e.g., Hall, 1988), and using
input prices as instrumental variables (e.g., Griliches & Mairesse, 1998). The fixed effect model
assumes a time-invariant productivity shock, that is, ωit ¼ωi, which does not work well in practice.
Similarly, the static first-order condition typically does not hold in the choices of flexible inputs.
Using input prices as IVs is also questionable for reasons like not capturing input quality and/or lack
of variations across firms.6 The caveats of the prior approaches motivate the Olley-Pakes/Levinsohn-

2We discuss the detailed procedure of quality adjustment in a later section.
3The construction details of the output and input variables are described in the data section.
4We follow the Cobb–Douglas specification of the production function mainly because it is a predominant specification in the industrial
organization literature (De Locker & Syverson, 2021). Other specifications include, for example, translog (e.g., De Loecker & Warzynski, 2012)
and the constant elasticity of substitution (e.g., Grieco et al., 2016).
5Hicks-neutral productivity is defined as a non-input-related or factor-neutral shift of the production function. It measures the changes in
output that are not explained by changes in inputs. Therefore, a higher productivity here means more output can be produced from a fixed set
of inputs. This is a predominant setup in the industrial organization literature (De Locker & Syverson, 2021).
6We refer readers to Section 2.1, Ackerberg et al. (2015) for a detailed discussion of the related methods in the early literature.

4 THE ROLE OF ANIMAL BREEDING IN PRODUCTIVITY GROWTH
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Petrin (Levinsohn & Petrin, 2003; Olley & Pakes, 1996) method that we adapt to deal with the endo-
geneity problem.

OP/LP methods use a proxy variable that is monotonically increasing in productivity, such as invest-
ment (in OP) and intermediate inputs (in LP), to control for unobserved productivity. In our study, we
use the investments in breeding and genetics, git , as the proxy for unobserved productivity:
git ¼ gt ωit ,cit ,kitð Þ.7 If there is a positive, monotonic relationship between the amount of investment
git and productivity ωit for any combination of cit and kit , meaning ωit is increasing in git , then the
inverse, ωit ¼ g�1

t ¼ϕt git ,cit ,kit
� �

, can be used as a valid proxy for productivity. We use two variables
to represent for genetic investment: breeding expenditures and the average productivity and health
indices of the bulls chosen for breeding. By using git as the proxy for unobserved productivity, we
replace ωit in Equation (2) by ϕt git ,cit ,kit

� �¼ ht git ,cit ,kit
� �þβkkitþβccit and rewrite the production

function as follows:

qit ¼ βl litþβf f itþβmmitþϕt git ,cit ,kit
� �þ εit , ð3Þ

where ϕt is a third-order polynomial approximation of productivity, which includes the linear terms
βkkit and βccit . Based on Equation (3), we obtain the predicted output by regressing observed output
on all of the inputs and the proxy variable of breeding investment. Using the predicted output bq, we
estimate the productivity shock ωit ¼ qit�bqit to estimate the parameters of the law of motion of
productivity.

We depart from the standard OP/LP model by following De Loecker (2013) and amending the
law of motion for productivity. Instead of a first-order Markov process for productivity defined in
the standard OP/LP model, we assume that genetic investments in year t�3 impact productivity in
year t. This time lag is a result of the biological constraints of dairy farming. When a cow becomes
pregnant after breeding, it gives birth 10months later. That offspring is then bred at about 1 year old
so that it can begin producing at 2 years old. Altogether, the breeding decision and the productivity
resulting from that decision are about 3 years apart. If ξit denotes the productivity shock, the
corresponding law of motion becomes:

ωit ¼φt ωi,t�1,Gi,t�3ð Þþ ξit : ð4Þ

For Equation (4), we consider two cases. In the first case, productivity follows an AR(1) process and
is a linear function of genetic choice 3 years ago and a productivity shock. It is represented as:

ωit ¼ ρωi,t�1þ γGi,t�3þξit : ð5Þ

In the second case, we add an interaction between the level of productivity last period (ωi,t�1) and
the level of investment that will be realized next period (Gi,t�3)

8:

ωit ¼ ρωi,t�1þθ1Gi,t�3þθ2Gi,t�3ωi,t�1þ ξit : ð6Þ

In De Loecker (2013), the interactions allow firms with different levels of productivity to have differ-
ent returns to exporting. In our case, it captures heterogeneous returns to breeding investments by
allowing returns to vary with farm productivity. In essence, ωi,t�1 reflects the productivity of last
year’s cow cohort and ρ reflects how much those effects persist. The genetic investment Gi,t�3 reflects
the productivity of the incoming cohort, with θ1 measuring the incoming cohort’s impact on

7Note that the input factors, number of cows (c) and capital (k) are fixed and thus affected only by information at t�1. Also, cow number is
relevant in the sense that genetic investment g is the total investment on the herd.
8This requires the assumption that the new cohort is genetically related to the current cohort. This is reasonable as a majority of Wisconsin
dairy farmers raise replacement heifers by themselves for obtain replacements cheaper than in the market and have more control over genetics
and disease. We thank a reviewer for pointing this out.
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productivity. The effect of adding the new cohort to the existing cohort is measured by θ2. Because
the new cohort is almost always genetically related to the current cohort, the interaction between
current and incoming cohorts is a significant part of how productivity evolves on dairy farms. The
sign of θ2 also sheds light on whether there are decreasing or increasing returns to genetic invest-
ments in dairy. A positive sign would indicate that the most productive dairy farms get the most out
of genetics investment (increasing returns), whereas a negative sign would indicate that the returns
to genetics are lowest for the most productive farms (decreasing returns).

Following De Loecker (2013), we assume E Gi,t�3ξit½ � ¼ 0 to obtain identification. This assumes
that breeding decisions made 3 years prior are independent of the evolution of current productivity.
This assumption gives a moment condition we can use to identify the parameters of interest by
applying the general method of moments (GMM):

E ξit li,t�1,ki,t�1,ci,t�1, f i,t�1,mi,t�1
� �� �¼ 0: ð7Þ

This moment condition highlights the importance of including Gi,t�3 when identifying the coeffi-
cients of the production function. If we omit breeding from the evolution of productivity, that is
ωit ¼ϕt ωi,t�1ð Þþξit , then the productivity shock ξit contains the impact of genetic investment on
productivity. If genetic investment correlates with any of these inputs, omitting genetic investment
from the law of motion would bias the factor shares. The estimation is conducted in two steps. Using
the inputs and the proxy variable, the first stage regression generates predicted output with the esti-
mated input coefficients.9 Together with the law of motion, the output in the first step is used to con-
struct the productivity shock ξit . In the final stage, the production function parameters are estimated
using the moment conditions mentioned above.

With the method, we address two questions concerning the role of genetic improvement in dairy
productivity growth. First, we examine whether farmers’ choice in genetics affects the law of motion
of productivity. In contrast to previous work, we explicitly model genetic improvement as an invest-
ment in future productivity made by the farmer and not solely an exogenous feature of the technol-
ogy. Second, we examine the extent to which ignoring genetic improvement biases estimated factor
shares in the production function when studying dairy farming.

2.2 | Quality adjustment of output

As quality and quantity jointly determine milk price, dairy farmers take both into consider-
ation when making genetic choices. Therefore, we adjust milk production by quality attri-
butes to measure productivity and its growth accurately. Following Atsbeha et al. (2012), we
generate a milk quality index with three key attributes affecting milk price: nutrient compo-
nent percentage, including the butterfat percentage (Cfat

it ) and protein percentage (Cprotein
it ), and a

quality attribute represented by somatic cell count in unit milk (SCCit). The higher the butterfat and
protein percentage, the better the milk quality; the lower the SSC, the better the milk quality.

Let Iit denotes the unit milk value represented by milk price received by farm i at time t. Assum-
ing that the unit value is approximately linear in protein percentage, fat percentage, and SSC
(Atsbeha et al., 2012), we estimate the following hedonic price equation:

9Ackerberg et al. (2015) discusses the “functional dependence problem” in identifying the coefficients of the labor input βl in the first stage of
the OP and LP methods. The concern is that after controlling investment (or intermediate input) in a nonparametric function for unobserved
productivity, there is no variation left to consistently estimate βl . In our setting, the unique features of the control variable, the investment in
breeding and genetics, enable us to break the functional dependence problem and identify the parameters of βl , βf , and βm . As the data
generation processes of lit , f it , and mit are different from that of Git , the “optimization errors” (Ackerberg et al., 2015) in the choices of lit , f it ,
and mit induce variations for identification. Variation also comes from the different timings of the choices of lit , f it , mit , and Git . Whereas lit ,
f it , and mit are chosen at t as functions of ωit , the choice of Git partially depends on the information of Gt�3 (Equation (4)). We thank a
reviewer for pointing this out.

6 THE ROLE OF ANIMAL BREEDING IN PRODUCTIVITY GROWTH
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Iit ¼ α0þα1C
fat
it þα2C

protein
it þα3SCCitþηit , ð8Þ

where the term ηit is an error. With the estimated parameters bα0, bα1, bα2, and bα3, we calculate the
average unit milk value of all sample farms bI with average milk quality attributes C

fat
, C

protein
and

SCC as follows:

bI¼bα0þbα1Cfatþbα2Cproteinþbα3SCC: ð9Þ

The term bIit=bI is specified as the milk quality index, which equals one when a farm’s milk quality is
equivalent to the sample average, greater (or lower) than one when a farm’s milk quality is better
(or lower) than average. The quality-adjusted milk output of farm i, eQit , is then calculated as:

eQit ¼
bIitbI Qit: ð10Þ

2.3 | Survival bias

Firms dropping out of the data present a problem for accurately estimating production functions,
especially if firms drop out for having too low of productivity. This is especially a concern when ana-
lyzing the dairy sector because there is a long-run trend toward farm consolidation as small farms go
out of business and the remaining farms grow larger (MacDonald et al., 2020). If the farms dropping
out of our sample have lower productivity than those “surviving,” our production function estimates
would be biased.

We follow Olley and Pakes (1996) and assume that firm i stays in the market (χit ¼ 1) instead of
exiting the market (χit ¼ 0) if its productivity exceeds some threshold ωit Kit ,Citð Þ, which makes the
sample selection rule:

χit ¼
1 ωit ≥ωit Kit ,Citð Þ,
0 otherwise:

�
ð11Þ

Our investment measure Git is also a function of current productivity ωit . The practical implication
of this is that the probability of a firm i exiting the market in time t, Pit ¼P χ i,t�1 ¼ 0

� �
, is a function

of last year’s inputs: Ki,t�1, Ci,t�1, and Gi,t�1. To correct the production function estimates, the
probability has to be estimated using these three variables and then included in the final
estimation.10

Olley and Pakes (1996) use probit and a kernel estimator to estimate these probabilities and
include a range of nonlinear interactions of the three variables. We improve on their method by
using a supervised machine learning algorithm, random forest, to estimate the probabilities as a
function of capital, the number of cows, and genetic investment. The advantage of the random
forest is that it naturally takes into account nonlinearities when predicting because it iteratively
splits the features in random places to improve model fit. Our random forest model is trained
using fivefold cross-validation and the details of the estimation can be found in the supplemen-
tary materials in Appendix B. When benchmarked against probit, OLS, and kernel estimation,

10Details of how Pit is incorporated into the estimation are found in Olley and Pakes (1996). Effectively, instead of just approximating a proxy
function ϕit as would be ordinary in a control function approach, another proxy function, ψ it , has to be approximated as a function of bϕi,t�1,
Ki,t�1, Ci,t�1, Gi,t�1, and the probability estimate bP Ki,t�1,Ci,t�1,Gi,t�1ð Þ. The function ψ it is included in the final estimation of the production
function to correct for the sample selection bias.

HUTCHINS ET AL. 7
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the random forest performs significantly better even without training. Our analysis in the sup-
plementary materials in Appendix B demonstrates that supervised machine learning can greatly
improve this step of estimating production functions that have sample selection. We next turn
to our data sources for estimating the production function and understanding the role of genetic
investment in dairy farm productivity.

3 | DATA

The main data used in this study consist of 372 farm-level observations of output and inputs from
60 farms in Wisconsin over 2008–2018. The data are collected by the University of Wisconsin
Center for Dairy Profitability (CDP). The CDP data are collected by two farm records associations,
which provide record-keeping, tax preparation, and consulting services to dairy farms throughout
Wisconsin. Compared to the agricultural census, farms that participate in CDP benchmarking are
larger: the average in the CDP data is about 177 cows whereas the averages in the 2012 and 2017
census were closer to 120. Given that more than 60% of Wisconsin farms in the census are less
than 100 cows, our sample represents slightly larger operations but would still be considered
small-scale dairies. In both the CDP and census, less than 10% of farms are larger than 500 cows.
Our CDP sample is broadly representative of small- to medium-scale dairies with between 50 and
500 cows.

We also combine the CDP data with records of breeding decisions from Dairy Herd
Improvement Associations (DHIAs) over 2012–2018 to measure the genetic quality of bulls
each farm selects. DHIAs collect cow-level records for the purpose of benchmarking and
genetic evaluation, as well as details on which bulls bred to which cows on the farm. By
matching bull identities to their publicly available market traits, we can obtain a measure of
genetic quality that is based on which bulls the farm chooses to breed with each year rather
than expenditure.

For the dairy farms in the CDP data set, we observe extensive output and input information in
each year. On the output side, we observe revenue from selling milk, the quantity of sold milk, but-
terfat, protein, and the somatic cell counts (SCC) of each unit of milk. On the input side, we observe
expenditure on hired labor, feed, fuel, and utility; the number of cows; and the value of buildings,
machinery, and equipment owned by the farms. Critically, we also observe breeding expenses, which
is expenditure on bull semen and breeding services to produce replacement offspring in the future.
To obtain the indirect quantity measures of output and inputs, the revenue and the expenditure are
deflated with national level price indices obtained from the USDA Quick Statistics (NASS,
2022).11,12 The price indices used to deflate each factor are found in the bottom of Table 1.

Table 1 presents the descriptive statistics of the ouput and inputs, including mean, standard devi-
ation, and percentage change over 2008–2018. During the sample period, the average farm size mea-
sured by average milk revenue and herd size shows a growing trend. The average milk revenue
increases from 74 million in 2008 to 133 million in 2018 and grows by 80%. The average herd size
grew by 64%, from 177 in 2008 to 290 in 2018. During the same period, the average breeding

11We do not use the observed milk quantity as we want to adjust milk quality as discussed above.
12This is the common practice in the literature to obtain quantity measures of output and inputs (De Locker & Syverson, 2021). This generates
the so-called revenue-based total factor productivity (TFPR). Given the lack of farm specific output and input prices, aggregate price indices
(national level indices in our case) necessarily generate measurement errors in the output and inputs measures, although we focus only on the
dairy farms in Wisconsin. One possible solution is to decompose revenue to price and quantity, and then add in a demand structure for price
(e.g., De Loecker, 2011). But this solution also requires assumptions on which the literature has not settled. The decomposition method does
not work for measurement errors in inputs. We refer the readers to a detailed discussion in Section 4 of De Locker and Syverson (2021).
With regard to milk quality, farmers are paid on their components using Class III prices. However, because prices change month to month,
there is no way to apply this pricing scheme to milk output measured at the annual level. Also, farms receive individual premiums and
incentives that we do not observe. To adjust for milk quality, we use regression-derived weights calculated from Equation (8) to perform the
quality adjustment as Atsbeha et al. (2012) does. This procedure necessarily introduces some measurement error in the case that the estimates
are inaccurate. Still, we believe this approach is highly preferred to not quality adjusting output, and so the risk of measurment error is justified.

8 THE ROLE OF ANIMAL BREEDING IN PRODUCTIVITY GROWTH
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expenditure grows by 42%. Table 2 shows the descriptive statistics such as mean, standard deviation,
and percent change over 2008–2018 of milk quality indices containing butterfat percentage, protein
percentage, and SCC. Table 3 shows the estimates of Equation (8), which we use to construct
quality-adjusted output and the “linear adjuster.” The linear adjuster is about 0.9, meaning it revises
output slightly lower due to farms producing volume without necessarily producing more compo-
nents. The linear adjustment stays fairly constant as there is only a minor change in butterfat per-
centage and protein percentage from 2008 to 2018. However, SCC decreased by around 40% during
the period. SCC is typically used as a proxy for the incidence of mastitis, so its decrease implies
increasing milk quality and cow health.

In this study, we focus on the breeding technology of artificial insemination (AI), which is the
most widely used breeding technology in the US dairy sector (Khanal & Gillespie, 2013; Nehring
et al., 2021). In AI, semen from selected sires are artificially introduced to cows. AI has wide adop-
tion in the dairy industry because it allows for more precise control over the genetic quality of future
replacements and lowers the risk of venereal disease (Foote, 1996). According to data from the Agri-
cultural Resources Managment Survey (ARMS), it was used by more than 80% of dairy farms in
2016 (Nehring et al., 2021). Farms tend to avoid buying replacements from outside the farm due to
the higher cost and the risk of disease. AI is generally the preferred method for choosing the future
genetics of the herd in Wisconsin.

Figure 2 shows the distribution of breeding expenditure, our main investment proxy, across
farms in our whole sample. Breeding expenditure is made up of two components: genetic quality

T A B L E 1 Summary statistics of CDP sample

Variable All 2008 2013 2018 Change % over 2008–2018

Milk sold income1 91,215
(104,043)

73,788
(86,610)

88,498
(97,403)

132,895
(142,901)

80

Milk (1000 pounds) 5469
(6152)

4347
(5080)

5463
(5992)

7786
(8195)

79

Butter fat (1000 pounds) 202
(224)

161
(186)

202
(214)

297
(312)

84

Protein (1000 pounds) 165
(185)

131
(154)

166
(181)

234
(246)

79

Somatic cell count index
(1000 cells/ml)

186
(88)

224
(100)

180
(69)

120
(33)

�46

Herd size 213
(213)

177
(183)

208
(204)

290
(282)

64

Capital (1,000)2 376
(462)

326
(523)

357
(398)

516
(527)

58

Feed (1,000)3 306
(356)

225
(313)

282
(305)

391
(391)

74

Hired labor (1,000)4 117
(154)

105
(146)

122
(156)

136
(187)

30

Utility (100 kWh) 19
(16)

18
(18)

18
(13)

24
(20)

33

Breeding expenditure (1,000)5 20
(20)

19
(21)

19
(19)

27
(23)

42

# Observations 372 45 35 19 -

Note: The numbers in the table are means and standard deviations (in parentheses). 1 Milk sold income is adjusted with dairy product price
index. 2 The market value of building is adjusted with building material price index. The market value of machinery and equipment is adjusted
with machinery price index. 3 The expenditure on feed is adjusted with forage feed price index. 4 The expenditure on hired labor is adjusted
with wage rate price index. 5 The breeding expenditure is adjusted with CPI.
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and technician fees. Technician fees are usually more or less uniform across cows, but the remaining
variation in expenditure is due to the cost of the genetics itself. Hedonic analyses of dairy genetics
markets show that the most expensive genetics tend to be those with high production traits and, to a
lesser extent, bulls with better health traits (Richards & Jeffrey, 1996; Schroeder et al., 1992).

To adjust for herd size, Figure 2 shows breeding expenditure per cow. On average, farms spend
about $90 per cow. As a reference point, the average price for a dairy bull was $20–$30 per service in
the period 2010–2020. Because some cows do not get pregnant the first time, we may expect that in
1 year a farmer may purchase two bull services, meaning an annual cost between $40 and $60 per
cow per year. The remaining cost can be explained by additional service costs charged by the breed-
ing company, which do not scale with genetic quality in the majority of cases.13 The median breed-
ing expenditure is $85 due to the large right tail of farms that spend more than $150 per cow on

T A B L E 2 Summary statistics of milk quality indexes

Symbol Description Unit All 2008 2013 2018 Change % over 2008–2018

Cfat
it

Butterfat % 3.75
(0.24)

3.76
(0.26)

3.80
(0.19)

3.84
(0.14)

2

Cprotein
it

Protein % 3.04
(0.19)

3.09
(0.37)

3.06
(0.11)

3.04
(0.08)

�2

SCCit Somatic cell
count index

1000
cells/ml

200
(90)

218
(93)

180
(70)

134
(40)

�39

bIitbI Linear
Adjuster

# 0.91
(0.03)

0.92
(0.03)

0.88
(0.02)

0.90
(0.01)

�2

Qit Milk
production

1000
pounds

4514
(5448)

4087
(4751)

4707
(5504)

7334
(7937)

79

eQit Adjusted milk
production

- 4080
(4916)

3791
(4436)

4120
(4786)

6565
(7093)

73

# Observations 738 60 46 28

Note: The numbers in the table are means and standard deviations are in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

T A B L E 3 Quality adjustment parameters

Variable Parameters

Butterfat percentage 1.057***
(0.186)

Protein percentage 0.572**
(0.244)

Somatic cell count index �0.003***
(0.001)

R-square

Within herd 0.3188

Between herd 0.6161

Overall 0.4138

# Observation 738

# Herds 116

Note: The parameters are estimated using OLS with the farm IDs as fixed effects.
***p < 0.01,**p < 0.05.

13Large outliers may be explained by embryo transfer, a more expensive delivery method for genetics used in a minority of cases.

10 THE ROLE OF ANIMAL BREEDING IN PRODUCTIVITY GROWTH
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breeding. Although not much data are available on the costs of individual genetics on dairy farms in
general, the price of bulls is primarily explained by genetic quality (Richards & Jeffrey, 1996). For
this reason, the breeding expenditure variable is a suitable proxy for investment in future productiv-
ity through genetic improvement.

One potential component of breeding expenditure that can attenuate its impact on productivity
is repeated breeding attempts. If a cow does not conceive after the farm pays for breeding services,
the farm must purchase the genetics again to repeat the attempt. To the extent that some infertility
may be a result of management, breeding expenditure may be high in some cases because of persis-
tently poor fertility. If firms with poor fertility are also less productive, then this attenuates the posi-
tive impact of breeding expenditure on productivity toward zero. We should also expect that farms
with high productivity get more productivity out of their breeding expenditure, meaning the interac-
tion between productivity and breeding expenditure (θ2 in Equation (6)) would be positive.

To complement our analysis using breeding expenditure, we merge CDP data with our DHIA
data to obtain a more direct measure of genetic investments: the genetic traits of the bulls that farms
choose. Dairy farms make investments into the genetics of their herd by purchasing bulls with cer-
tain traits. Farms can choose bulls with higher production traits, for example a higher fat or protein
yield, in order to have replacement cows in the future that yield more fat or protein. Fat and protein
yield are especially important to Wisconsin dairy farms because they are located in the Upper Mid-
west Milk Marketing Order (Federal Milk Marketing Order 30) and are paid based on the amount of
protein and fat they produce in pounds. Given these incentives, most dairy bull selection indices do
not include milk yield independent of fat and protein (that is increasing volume). Instead, fat and
protein yield are the primary trait indices using in dairy bull selection.14 Farms can also choose to
invest in health by choosing bulls with a lower “somatic cell count” (a measure that correlates to the
incidence of mastitis) or a higher “daughter pregnancy rate” (a measure that correlated to fertility).

Our data on genetic indices come from the Council on Dairy Cattle Breeding (CDCB). The
CDCB estimates genetic indices for dairy sires called “predicted transmitting ability” (PTAs) three
times a year, which are publicly available through the National Association for Animal Breeders
(NAAB, 2022). The indices measure how much a sire will “transmit” performance relative to a base
bull whose PTA is equal to zero. For example, if a bull has a butterfat PTA score of 50, then the
farmer can expect that offspring from that bull will produce 50 more pounds of butterfat than the
base bull. The indices are used by companies to price bulls and by dairy farmers to help inform their
breeding choices.

F I G U R E 2 The distribution of breeding expenditure per cow

14See, for example, the weights for the Net Merit index used widely in the dairy industry. In this index, fat and protein are valued at $4 a pound
whereas milk yield is valued at less than $0.01 a pound. Milk yield is given a low weight because, independent of fat and protein yield, there is
little market value to producing high volume.

HUTCHINS ET AL. 11
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We use around 140,000 dairy bull evaluations from the period 2012–2019 and focus on five traits:
milk yield, fat yield, protein yield, somatic cell count, and daughter pregnancy rate. The first three are
production related, the fourth is related to health, and the last trait is a measure of fertility. To con-
struct production and health indices from these five traits, we use a technique called principal compo-
nent analysis (PCA). PCA is an orthogonal, linear transformation of data into a new coordinate
system whereby the first axis, called the “first component,” explains the most variance in the data pos-
sible, the second axis the second most variance, and so on. PCA was introduced to the economics and
psychology literature by Hotelling (1933) and has since been applied in economics in a variety of ways
(Aït-Sahalia & Xiu, 2019; Manyong et al., 2006; Nieuwoudt, 1972). One popular and relevant applica-
tion of PCA is constructing indices of several different variables (Vyas & Kumaranayake, 2006).
Because each component is a linear combination of variables in the data, the components can be inter-
preted as a weighted index of the variables. This is especially useful when there is correlation between
different variables, and we would prefer one index that represents them all.

In the case of genetic traits, PCA helps us construct two indices that represent our three production
traits and two health traits. In our calculations, the first two components captured 83% of the variance
in these five traits. The first component was highly correlated with the three production traits, whereas
the second component was highly correlated with somatic cell score and daughter pregnancy rate. We
use the first component as our “production index” and the second as our “health index.”15

After constructing these indices, we match this data to DHIA data of farm breeding choices. By
matching the bull ID in DHIA to its evaluation from the CDCB, we know the bull’s production and
health index scores at the time it was chosen. This gives us two measures of genetic investment:
breeding expenditure and genetic indices. The first of these measures is simply a cost measure, how
much dairy farms spend on breeding, whereas the second more accurately measures in what dairy
farms are investing. Unfortunately, there are only a few farms both in DHIA and CDP so the genetic
index scores can only be used in a subset of our data. Still, by examining the subset of data belonging
to both the CDP data and the DHIA, we have a never-before-seen look into how dairy farmer breed-
ing choices translate into productivity.

The summary statistics for this merged sample are in Table 4. The merged CDP-DHIA sample
has 88 observations over 2012–2018. The average herd size in the merged sample is 275 cows per
farm, larger than the average herd size in the CDP sample, 213 cows per farm. The average output
and input are also larger for dairy farms in the merged CDP-DHIA sample.

Combining both CDP and DHIA data, we obtain two proxy measures for genetic investments:
breeding expenditure and the average production and health indices of their bull choices. These two
measures capture different aspects of genetics investments. Total breeding expenditure contains the
cost of the bull semen, labor fees, and management fees. According to hedonic analyses of dairy bull
prices, bulls with the most productive genetics in terms of milk production tend to be the most
expensive, so we can assume breeding expenditure is weakly increasing in genetic traits measuring
productivity (Richards & Jeffrey, 1996; Schroeder et al., 1992). Our genetic indices measure the aver-
age traits chosen in that year, which helps us measure the type of investments being made. This mea-
sure also partially alleviates concerns about potential distortion on total genetic investment caused
by herd size. It is not a per-cow based measure as it is averaged over chosen bulls. However, it
reflects the average quality of genetics incorporated into a herd and should be highly correlated with
the average level of investment, especially for large herds. We analyze both production traits and
health traits using our created indices. Milk producing traits have received the most attention
(Atsbeha et al., 2012; Roibas & Alvarez, 2010), yet health traits can also have an important relation-
ship to productivity. Many health conditions such as mastitis directly impact milk production, mak-
ing it feasible that farms may invest in these health traits to increase productivity.

15Table A1 in the supplementary appendix reports the loading scores for the production index and shows that milk yield, fat yield, and protein
yield are correlated to the first component in a similar way. This indicates there is no direct trade-off between milk yield and component yield.
We refer the readers to the supplementary Appendix A for a more detailed discussion.

12 THE ROLE OF ANIMAL BREEDING IN PRODUCTIVITY GROWTH
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Figure 3 shows the growing trend of average breeding investment and the production and health
ability of the chosen sires in our sample. These Wisconsin dairy farms made breeding decisions simi-
lar to the rest of the country: The genetic production index is growing rapidly over time just as in
Figure 1. In contrast, the health index scarcely grew at all during this period. There seems to be little
variation in the health index during this period, reflecting a tendency for dairy farmers to invest in
milk production more than in health traits.

In the next section, we present our estimation results from this unique dataset to explore the role
of breeding in accelerating productivity growth in dairy. Comparing across methods, we also deter-
mine whether omitting genetic investment leads to biased estimates of factor shares.

4 | RESULTS

Panel A of Table 5 presents the parameters estimated with four models: an OLS model, a standard LP
model in which breeding expenditure is the proxy variable for unobserved productivity (but not in the
law of motion), a LP model with breeding expenditure in the law of motion (Equation (5)), and an LP
model where breeding expenditure is interacted with productivity in the law of motion (Equation (6)).
In these last two models, breeding expenditure is also used as the proxy variable. The parameters of
interest in LP models are estimated in the GMM framework, and one-period lag terms are used as the
instruments for labor, feed, and intermediate inputs. The last column of Table 5 reports the means and
standard errors of the differences of the estimated input coefficients in Columns 2 and 4.

Comparing the results in Column 1 with those of the other columns, we find that the OLS over-
estimates the coefficients of the flexible inputs of labor and herd size represented by cow number
because of the endogeneity or the positive relation between the inputs and unobserved productivity.
This is consistent with the findings in the literature (e.g., Jang & Du, 2019).16 Including breeding

T A B L E 4 Summary statistics for CDP-DHIA sample

Variable Mean Std. err. Minimum Maximum

Milk sold income (1000)1 127,665 137,428 10,140 632,094

Milk (1000 pounds) 7469 7867 640 35,528

Butter fat (1000 pounds) 279 288 24 1305

Protein (1000 pounds) 225 236 20 1062

Somatic cell count index 148 58 61 374

Herd size 275 259 38 1177

Capital (1000)2 517 536 4 2401

Feed (1000)3 424 446 13 2150

Hired labor (1000)4 147 191 0 855

Utility (100 kWh) 23 19 4 84

Breeding expenditure (1000)5 26 24 1 92

Genetic production index 0.80 0.56 �1.30 1.91

Genetic health index 0.30 0.44 �1.32 1.40

# Observations 88

Note: 1 Milk sold income is adjusted with dairy product price index. 2 The market value of building is adjusted with building material price
index. The market value of machinery and equipment is adjusted with machinery price index. 3 The expenditure on feed is adjusted with forage
feed price index. 4 The expenditure on hired labor is adjusted with wage rate price index. 5 The breeding expenditure is adjusted with CPI.

16We do not find a downward bias of the OLS estimate on the capital input as suggested in the literature probably because of relatively small
size and number of farms in the sample. We thank a reviewer for pointing this out.
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investment in the law of motion of productivity has no statistically significant effects on the esti-
mated factor shares. Coefficients do change, but the differences between Column 2 and 4 are not sta-
tistically significant. Including a nonlinear interaction term does not appear to affect estimation
given that the Column 3 and Column 4 estimates are essentially the same. Although including breed-
ing investments may affect factor shares, our sample size is too small to determine whether these
changes are statistically significant.

Panel B of Table 5 presents the coefficients for the law of motion of productivity. As
expected, breeding expenditure that occurred 3 years ago has a positive and significant effect on
current productivity. Although there was some risk of attenuation bias using breeding expendi-
ture, we still see a positive and significant impact. The probability of exiting is negatively related
to productivity, which implies that firms more likely to exit have lower productivity. This fits
with what we expect from an industry that is consolidating: less productive firms are exiting and
leaving only the most productive firms in the industry (Olley & Pakes, 1996). When we include
the interaction term, we see a negative sign on the interaction, but only the probability of exit
remains statistically significant. This pattern suggests that there are diminishing returns to
investments in genetics, but the size of the standard errors makes it impossible to confirm
whether this is the case. Still, because we do not find the interaction term to be positive, this is
evidence against breeding attempts being a major component of breeding expenditure (see dis-
cussion in Section 3).

Table 6 examines the same questions but compares using breeding expenditures to genetic indi-
ces, a less noisy measure of investment in genetic improvement. Panel A of Table 6 compares the
factor shares for the models that use breeding investment, genetic indices, or both in the law of
motion respectively. The coefficients change very little between these models, except the materials
coefficients that are not statistically different from zero in any model. Panel B of Table 6 shows how
the genetic indices factor in the law of motion compare to that of breeding expenditure. Production
and health indices from bulls chosen 3 years ago correlate positively to current productivity, though
only the production index is statistically different than zero at the 95% level. The interaction term
for the production index is negative just as in breeding expenditure and is statistically significant.

F I G U R E 3 Average breeding investment and genetic production index, 2008–2018

14 THE ROLE OF ANIMAL BREEDING IN PRODUCTIVITY GROWTH
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The interaction term is an estimate of the parameter θ2 from Equation (6), which measures how the
new cohort’s improved productivity enhances the productivity of the current cohort. We find evi-
dence of diminishing returns to genetics, meaning already productive farms will benefit less from
genetic investments than farms that have less productive cows. This makes intuitive sense, because
cows are likely to have biological constraints that prevent genetic improvement from indefinitely
increasing productivity. For example, cows that have higher milk production are more likely to
develop certain health problems (Oltenacu et al., 2010). Farms with lower productivity have more to
gain from genetic improvement than farms that are already productive and may be dealing with this
trade-off between health and production.

As a robustness check, we examine the relationship between realized quality and genetic investments
by comparing the coefficients on the law of motion with and without quality-adjusted output. Because
many genetics investments involve quality (e.g., protein and butterfat output), it is important to under-
stand how quality and genetics investments interact. Table 7 show the model parameters from Table 6
with and without the quality adjustment and the difference between them. As before, the production
function coefficients differ but are not statistically different, which is likely due to small sample size. In

T A B L E 5 Estimates of the production function and Law of Motion

OLS Standard LP model De Loecker model
Coefficient difference,
(2)–(4)

Panel A: Production Function

Variable (1) (2) (3) (4)

Labor 0.077***
(0.012)

0.067***
(0.012)

0.059
(0.047)

0.059***
(0.010)

0.008
(0.006)

Capital 0.022***
(0.008)

0.016**
(0.007)

0.016**
(0.007)

0.017***
(0.005)

�0.001
(0.004)

Herd Size 0.809***
(0.026)

0.786***
(0.052)

0.795***
(0.048)

0.804***
(0.038)

�0.018
(0.036)

Feed 0.110***
(0.021)

0.111*
(0.062)

0.116**
(0.048)

0.105***
(0.032)

0.005
(0.039)

Material 0.026
(0.020)

0.079*
(0.044)

0.041
(0.073)

0.041***
(0.029)

0.038
(0.027)

Constant 8.233***
(0.143)

8.062***
(0.045)

8.053***
(0.034)

7.994***
(0.038)

0.068
(0.056)

# Observations 366 366 366 366

Interaction - - No Yes -

Panel B: Law of Motion

Productivity,
t�1

- - 0.523***
(0.071)

0.614
(0.383)

-

Breeding
Expend, t�3

- - 0.014***
(0.003)

0.117
(0.316)

-

Productivity �
Breeding
Expend

- �0.012
(0.038)

Exit Probability
Pt kt�1,bt�1ð Þ

- - �0.060***
(0.021)

�0.062***
(0.022)

-

# Observations - - 283 283 -

Year FE - - Yes Yes -

R-squared - - 0.726 0.723 -

Note: Standard errors are in parentheses.
***p < 0.01,**p < 0.05,*p < 0.1.
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the unadjusted model, more of the coefficients such as labor and feed are insignificant than in the
quality-adjusted model. When the quality dimension is not taken into account, it appears that many
inputs have no relationship to output. Similarly, investments in production traits have no impact on pro-
ductivity in the law of motion when output is not quality adjusted.

There are two insights generated from this exercise. First, inputs may be used to generate quality
(butterfat and protein) instead of volume. If this is the case, ignoring quality adjustment may lead us
to think some inputs do not matter to production. The second insight is that farms investing in qual-
ity are likely also making breeding investments into quality. Without adjusting for quality, these
investments will not appear to have any impact on productivity.

T A B L E 6 Production function, CDP-DHIA sample

Breeding expenditure Genetic indices

Panel A: Production function

Variable (1) (2)

Labor 0.057***
(0.019)

0.055
(0.107)

Capital 0.013
(0.009)

0.011
(0.029)

Herd size 0.819***
(0.054)

0.817***
(0.243)

Feed 0.124*
(0.069)

0.147**
(0.062)

Material 0.009
(0.048)

0.031
(0.081)

Constant 8.025***
(0.049)

8.082***
(0.162)

Observations 87 87

R-squared 0.609 0.491

Panel B: Law of Motion

Productivity, t�1 0.664
(1.421)

0.970***
(0.340)

Breeding expend, t�3 0.296
(1.153)

-

Production index, t�3 - 3.895**
(1.645)

Health index, t�3 - 2.873
(2.718)

Productivity, t�1 �
Breeding expend, t�3

�0.033
(0.135)

-

Productivity, t�1 �
Production index, t�3

- �0.482**
(0.203)

Productivity, t�1 �
Health index, t�3

- �0.351
(0.335)

Exit probability,
Pt kt�1,bt�1ð Þ

�0.185**
(0.070)

�0.186**
(0.082)

# Observations 55 55

Year FE Yes Yes

R-squared 0.609 0.491

***p < 0.01,**p < 0.05,*p < 0.1.
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5 | CONCLUSION

Our work examines the relationship between investments in genetics through breeding and produc-
tivity growth in the US dairy industry. Using a detailed dataset of Wisconsin dairy farms, we incor-
porate investment in breeding services and genetic indices into the productivity law of motion. We
test whether or not omitting genetics investments impacts the estimation of factor shares in the dairy
production function. We find that including genetics investments in the law of motion changes the
point estimates for feed, labor, and materials in the production function, though no differences are
statistically different than zero. Although breeding investments made 3 years ago positively impact
productivity in the current period, the returns to investment are lowest for farms with high produc-
tivity. Put differently, we find that there are diminishing returns to investments in genetics on Wis-
consin dairy farms.

T A B L E 7 Model results with and without quality adjustment

Unadjusted model
Quality-adjusted
model

Difference between
two models

Variable Panel A: Production function

Labor 0.056
(0.059)

0.055
(0.107)

0.001
(0.073)

Capital 0.000
(0.017)

0.011
(0.029)

�0.011
(0.025)

Herd size 0.802***
(0.149)

0.817***
(0.243)

�0.016
(0.265)

Feed 0.153
(0.093)

0.147**
(0.062)

0.006
(0.148)

Material 0.050
(0.138)

0.031
(0.081)

0.019
(0.100)

Constant 8.009***
(0.091)

8.082***
(0.162)

�0.074
(0.138)

Observations 87 87 -

Panel B: Law of Motion

Productivity, t�1 0.726**
(0.326)

0.970***
(0.340)

0.244
(0.471)

Production
index, t�3

1.195
(1.917)

3.895**
(1.645)

2.700
(2.526)

Health
index, t�3

4.094
(2.892)

2.873
(2.718)

�1.220
(3.968)

Productivity, t�1 �
Production index, t�3

�0.147
(0.235)

�0.482**
(0.203)

�0.336
(0.310)

Productivity, t�1 �
Health index, t�3

�0.503
(0.355)

�0.351
(0.335)

0.152
(0.488)

Exit probability,
Pt kt�1,bt�1ð Þ

�0.260***
(0.095)

�0.186**
(0.082)

0.073
(0.125)

# Observations 55 55 -

Year FE Yes Yes -

R-squared 0.490 0.491 -

Note: Standard errors are in parentheses.
***p < 0.01,**p < 0.05,*p < 0.1.
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Our work has several limitations that may be able to be addressed in future work. First, the sam-
ple size in this study is very small. The sorts of data needed to understand investments in genetics in
the context of other inputs are hard to come by. Although datasets like the Agricultural Resource
Management Survey (ARMS) have detailed information about capital and labor inputs, they do not
have information about breeding investments. This a critical data gap that still exists when studying
dairy farm operations and leads us to our second limitation. In this study, we use spending on breed-
ing as a proxy for genetic investments. This may be a crude proxy for what we are actually trying to
measure: investments in genetic quality. Data on individual breeding decisions from DHIA can help
fill this gap, but the lack of crossover in our sample between DHIA and CDP farms makes estimation
very imprecise. Also, because the breeding decisions are at the animal level, it is an open question
what the best way to aggregate this information to the farm level is. Further data collection efforts
should particularly focus on trying to understand how much dairy farmers pay for different kinds of
genetics. These kinds of data are vital to understanding the link between investments in genetics and
productivity growth in a more precise way.

Strategic breeding has been one of the most important innovations in animal agriculture in the
past century. The next century poses new challenges for animal industries such as dairy, especially
addressing excessive greenhouse gas emissions from livestock industries. Part of these externalities
may be addressed in the future by breeding away from production and toward sustainability of the
operation (Wall et al., 2010). Our work is a crucial first step in determining just how important farm
investments in genetic improvement have been in the on-farm dynamics of productivity growth, and
thus a crucial first step in better understanding the role of genetics in the future of the dairy
industry.
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